
D
R

A
FT

InsECTJ: A Generic Instrumentation Framework for
Collecting Dynamic Information within Eclipse

Arjan Seesing and Alessandro Orso
College of Computing

Georgia Institute of Technology

a.c.seesing@ewi.tudelft.nl, orso@cc.gatech.edu

ABSTRACT
The heterogeneity and dynamism of today’s software sys-
tems make it difficult to assess the performance, correctness,
or security of a system outside the actual time and context
in which it executes. As a result, there is an increasing inter-
est in techniques for monitoring and dynamically analyzing
the runtime behavior of an application. These techniques
are usually implemented using ad-hoc solutions that result
in tools that are hard to develop, maintain, and reuse. To
address this problem, we present a generic framework that
enables the collection of different kinds of runtime informa-
tion, such as data about the execution of various code enti-
ties and constructs. The framework lets users easily define
how to process the collected information and is extensible
to collect new types of information. We implemented the
framework for the Java language as a set of Eclipse plug-ins.
The plug-ins provide an intuitive GUI through which the
functionality of the framework can be exploited. In the pa-
per, we also present an example of use of our framework and
plug-ins that helps illustrate their functionality and shows
their ease of use.

1. INTRODUCTION
Today’s software systems run in heterogeneous and dy-

namic environments, and are themselves increasingly dy-
namic in nature. Heterogeneity of runtime environments
can cause different software behavior in different context,
and the behavior of different instances of the software may
also vary because of software’s dynamic nature. This het-
erogeneity and dynamism make it difficult to assess the per-
formance, correctness, or security of a software system out-
side the actual time and context in which it executes. As a
result, there is an increasing interest in techniques that al-
lows for monitoring and dynamically analyzing information
about the runtime behavior of an application.

For Java programs, two common approaches for collect-
ing dynamic information are to add ad-hoc instrumentation
to the code using a bytecode rewriting library or to leverage
capabilities of the runtime system (e.g., the Java Virtual Ma-
chine Profiling or Debugging Interface [6, 8]). Unfortunately,
these approaches are usually expensive, and the resulting
tools are hard to develop, maintain, and reuse in different
contexts. Another approach that has been used to address
the problem of collecting runtime information is to leverage
an aspect-oriented language, such as AspectJ [1]. Although
aspect-oriented languages provide a convenient mechanism
for inserting probes at specific points in a program, they are
often inadequate when used for monitoring and dynamic

analysis: first, existing aspect-oriented languages are not
able to provide certain kinds of information, such as in-
formation at the basic-block level; second, aspect-oriented
languages are not easily extensible; third, many implemen-
tations of aspect-oriented languages tend to be inefficient.

To address these limitations of existing approaches, we
defined a generic framework that enables the collection of
various kinds of runtime information, such as data on the
execution of various code entities (e.g., branches and paths)
and constructs (e.g., assignments). Users can collect such
information with limited effort because the framework lets
them easily specify (1) which types of entities should be
monitored at runtime, (2) in which parts of the code such
entities should be monitored, (3) what kind of information
should be collected for each entity, and (4) how to process
the information collected. Moreover, our framework lets
users define how to process the collected information and
can be extended to collect new types of information.

We implemented the framework for the Java language as
a set of Eclipse plug-ins that are in the process of being re-
leased. The plug-ins provide an intuitive GUI and wizards
through which the functionality of the framework can be ex-
ploited. In the rest of the paper, we describe the framework
and the plug-ins in detail. We also present an example of
use of our framework and plug-ins that helps illustrate their
functionality and shows their ease of use.

2. APPROACH
Our goal is to provide an extensible, configurable, and in-

tuitive framework for gathering information from an execut-
ing program. Examples of this type of information include
coverage, profiling, and data values from specific points in
a program’s execution. Further, we would like our frame-
work to provide the information that it gathers in a generic
manner. Such a capability lets users easily build tools and
experimental infrastructure using the framework.

Our framework has two main characteristics: (1) it pro-
vides a large library of probes for collecting different kinds
of information for different code entities; and (2) it lets users
define instrumentation tasks, which allow for instrument-
ing different entities in different parts of the code, collect
different information from the different entities, and process
the information in a customized way.

2.1 Library of probes
Our framework includes a predefined set of probes. A

probe is typically associated with a program construct (e.g.,
a method call or the catching of an exception). We refer

1

Instrumentable Information

entity available

Method entry enclosing object
argument objects

Method exit return or exception object
Before method call target object

parameter objects
After method return return or exception object

Field read field object
containing object

Field write old field object
new field object
containing object

Basic block none

Before or after a branch none

Throw or catch exception object
Acyclic path none

Assignment value being assigned

Table 1: Instrumentable entities and information
available for each entity.

to the code constructs that we can instrument with probes
as instrumentable entities. For each instrumentable entity,
our framework can provide various information associated
with that entity. For example, in the case of a method call,
we can report the target object and all of the parameters
passed to the called method. Table 1 shows a partial list
of instrumentable entities, along with the information avail-
able for each entity. To identify the set of instrumentable
entities and the information to collect for each of them, we
conducted an informal survey among colleagues working in
the area of dynamic analysis.

Instrumentable entities are similar in spirit to joinpoints
in AspectJ [1], but are different in four respects. First, in-
strumentable entities let users fine tune the kind of infor-
mation collected for each entity, so improving the efficiency
of the framework. (In aspect-oriented programs, a consider-
able amount of information is always collected at joinpoints,
even if not used.) Second, our set of instrumentable entities
is more extensive than joinpoints. For example, there are no
joinpoint counterparts for entities such as basic blocks, pred-
icates, and acyclic paths. Collecting information for these
entities using AspectJ is either complex or not possible at
all. Third, our set of instrumentable entities is extensible.
Fourth, and on a more general note, instrumentable entities,
unlike AspectJ’s joinpoints, are specialized for collecting dy-
namic information, rather than for extending a program’s
functionality.

2.2 Instrumentation Tasks
In general, when collecting dynamic information, we are

interested in collecting such information for some specific
entities in the code (e.g., method calls and paths) and in a
subset of the program (e.g., in a specific module or set of
modules). Our framework lets the user specify this informa-
tion in the form of an instrumentation task. More precisely,
an instrumentation task specifies (1) which instrumentable
entities to instrument, (2) the parts of the code in which
those entities must be instrumented, (3) the kind of infor-
mation to collect from the different entity types, and (4)
how to process the information collected.

Because users can precisely specify the kind of informa-
tion they want to collect for a given entity type, our frame-

work can reduce the amount of instrumentation needed, thus
reducing its overhead. As Table 1 shows, different instru-
mentable entities provide different kinds of information. For
a method entry, for example, the framework can collect the
list of parameters of the call, whereas for a method exit it
can collect the return object or the propagating exception
(if any).

Users can specify how the collected information is pro-
cessed by defining a monitor (or by using an existing moni-
tor) that will receive the information and suitably handle it.
Each monitor is a concrete class that consumes information
reported by one or more probes inserted in the code (i.e., for
one or more instrumentable entities). For example, a mon-
itor for def-use analysis could collect information reported
for both field writes and reads. For the users’ convenience,
our framework includes an initial set of monitors for some
common analysis tasks (e.g., to collect various kind of cov-
erage or profiling information). The user can easily define
additional monitors for other tasks.

3. IMPLEMENTATION
Our framework is implemented for the Java language as

a set of three plug-ins for the Eclipse platform. We call
the implemented version of our framework InsECTJ (In-
strumentation, Execution, and Collection Tool for Java). A
first plug-in in InsECTJ, the core plug-in, implements the
general framework and uses an extension point to expose its
functionality to specific probe inserters. A probe inserter is
an instrumentation module that extends the extension point
in the core plug-in and is capable of instrumenting a specific
instrumentable entity. Probe inserters are bundled in a sec-
ond plug-in, called probe inserter plug-in. A third plug-in,
the GUI plug-in, provides the users with a GUI that makes
it easy to use the framework. The main part of the GUI
are two wizards. The first wizard lets users easily define
monitoring tasks by selecting the type of entities to instru-
ment, the parts of the code in which those entities must be
instrumented (at the method granularity level or higher for
now), and what information to collect for the various en-
tities. The second wizard supports users in creating new
monitors, by generating skeleton code that implements the
interface for the appropriate probe inserter(s) and that the
user can then complete. Each monitor is a class that gets
instantiated during the execution of the program.

We implemented the probe inserters using the Java Byte-
Code Engineering Library [2], which is already included in
Eclipse. To instrument the code, the probe inserters leverage
the new instrumentation package available in Java 5.0 [3].
It is worth noting that this part of the implementation can
also be used as a stand-alone tool that is configured using an
XML configuration file. The configuration file provides the
information that would otherwise be provided by Eclipse—
it specifies which probe inserters are to be used with which
monitors and which classes or methods should be instru-
mented.

By leveraging Java’s instrumentation capabilities, our frame-
work instruments programs at load time. Right before a
class is loaded, InsECTJ checks whether the class must be
instrumented and, if so, invokes the appropriate probe in-
serters. Each probe inserter instruments some or all of the
class’s methods by inserting calls to the appropriate monitor
in correspondence of the instrumentable entity for which the
probe inserter is defined. For example, the probe inserter for

2

method entries adds instrumentation before the first state-
ment in each instrumented method. The kind of instrumen-
tation added depends on the entity being instrumented and
on the information that the user needs to collect. For exam-
ple, the instrumentation inserted at method entries differs
depending on whether the user is interested in collecting
information on the parameters passed to the method or not.

On-line, or dynamic, instrumentation has many advan-
tages, the main ones being that it is totally dynamic, and
thus more flexible, and that it does not require to keep sev-
eral copies of the program. One problem with on-line in-
strumentation, though, is that users must pay the cost of
the instrumentation for each execution. To eliminate this
problem, InsECTJ also provides off-line, or static, instru-
mentation. Users can specify that they want to save the
instrumented classes and, thus, eliminate the runtime over-
head due to the dynamic instrumentation.

Figure 1 illustrates, using a class diagram, a partial de-
sign of our infrastructure and how probe inserters are de-
fined. This design allows for extensibility that goes beyond
the definition of new monitors. In fact, in case users need
to add an instrumentable entity that is not yet included in
our set, they can extend the extension point defined by In-

sECTJ, as shown in the figure. More precisely, new probe
inserters must extend the AbstractProbeInserter class, which
provides methods to simplify the actual instrumentation.
The new probe inserter must also define a new monitor in-
terface, which must in turn extend MonitorObject. After
the probe inserter has been defined, it behaves like any pre-
defined probe inserter, in that its users will have to create,
supported by InsECTJ, actual monitors that implement the
probe inserter’s interface. The next section provides more
details on how to extend InsECTJ.

4. EXAMPLE OF USE
Instead of providing complete details on the implemen-

tation and functionality of InsECTJ, which would require
more than the available space, we illustrate the main charac-
teristics of our framework and plug-ins through an example.
In the example, we provide an overview of how a user would
use InsECTJ to (1) define a monitor for an existing probe
inserter and (2) create a new probe inserter. Section 4.1 de-
scribes how to create a monitor and configure the instrumen-
tation and execution of a project using InsECTJ’s wizards.
Section 4.2 illustrates how the extension mechanism in our
core plug-in provides some guidance with the creation of a
new probe inserters (in addition, pre-defined probe inserters
can be used as examples).

4.1 Defining a New Monitor
This section discusses how to collect information from

one or more probe inserters. To this end, we show how
to create a new monitor for field reads and writes. Such
a monitor could be used, for example, to compute data-
flow coverage at the class-field level. Users who want to
create a monitor would start by creating a module skele-
ton using the Monitor Wizard (see Figure 2). This wizard
is implemented as a customized version of the pre-defined
New Java Class Wizard. We modified this wizard to that
AbstractMonitorObject is always selected as the superclass
for the new monitor, some fields are already filled with ap-
propriate values, and the interface list is specialized to show
only relevant interfaces (i.e., probe inserters’ interfaces). For

Probe Inserter plug in

Core plug in

AbstractProbeInserter

+monitorClass: Class<? extends MonitorObject>

+monitor: Class<? extends MonitorObject>

+instrumentMethod(mgen:MethodGen): void

<MonitorObject>

+processData(): void

AbstractMonitorObject

+monitoredClass: Class

+probeCount: int

#getContext(id:int): String

BranchProbeInserter

+instrumentMethod(mgen:MethodGen): void

<MonitorObjectInterface>

+report(id:int,taken:boolean): void

ConcreteBranchMonitor

+processData(): void

+report(id:int,taken:boolean): void

 calls

Figure 1: Class diagram that shows how a specific
probe inserter (for branches, in this case) extends
the core plug-in.

our example, the user would select DefMonitorInterface

and UseMonitorInterface as the interfaces of interest, as
shown in Figure 2, and the wizard would generate the skele-
ton code shown in Figure 3.

As the figure shows, the skeleton code contains three method
stubs and one constructor. Methods reportDef and reportUse

are the methods defined in the interfaces for the field write
and field read probe inserters, respectively. Method reportDef

(resp., reportUse) is called every time a field is defined
(resp., used). These methods should be implemented so
that they suitably use and/or save the information about
definitions and uses of fields passed to the methods. (The
specific use of this information depend on the dynamic-
analysis or monitoring task at hand.) Although param-
eters of the reporting methods are typically specific to a
probe inserter, probeId is a general parameter that corre-
sponds to an index for accessing various metadata associ-
ated with the instrumentable entities (e.g., current-method
name and signature and extra context information which
can be encoded as a string during instrumentation). Class
AbstractMonitorObject provides methods to retrieve such
metadata (see Section 4.2). This data is inserted into the
byte code of the instrumented program, which eliminates
the need for external files to store this information. In this
way, the instrumented program can run in isolation from
the instrumentation framework, with the exception of the
monitor classes.

Method processData is a method, defined in interface
MonitorObject, that is automatically called at the end of
the execution of the instrumented program by a ShutdownHook.

3

Figure 2: Screenshot of the wizard for creating a
new monitor.

public final class DefUseMonitor extends AbstractMonitorObject
implements DefMonitorInterface, UseMonitorInterface {

public DefUseMonitor(Class parent, int probes, Class monitor) {
super(parent, probes, monitor);

}
public void processData() {}
public void reportDef(int probeId, Object obj, Object old,

Object new) {}
public void reportUse(int probeId, Object obj, Object value) {}

}

Figure 3: Skeleton code generated by the monitor
wizard for a“def-use” monitor.

The implementation of this method should take care of sav-
ing the data collected during execution (e.g., by printing it
to the screen, writing it to a file, or saving it into a database).
In the future, we plan to add to the framework a call-back
mechanism that will allow monitors to report information
directly to Eclipse. This information could then be shown
in views or as context information in the Java editor.

After a monitor has been defined, instrumenting and run-
ning a project is a fairly straightforward step that involves
the use of our Launch Wizard. Figure 4 shows the instru-
mentation page in the launch wizard. In the upper part
of the wizard’s window, the user selects the classes and/or
methods to instrument. In the lower part of the window,
the user can select which entities should be instrumented in
the selected code and which monitors should be associated
with the corresponding probe inserters. In future work, we
plan to extend this interface to provide more options and
give a finer-grained control over the instrumentation.

4.2 Defining a New Probe Inserter
There may be cases in which a user needs to monitor en-

tities that are not in our predefined set of instrumentable
entities. In these cases, users can extend InsECTJ by cre-
ating a new probe inserter. In this section, we provide a
high-level view of the steps that are involved in creating a

Figure 4: Launching a project with instrumentation
using the launch wizard.

public interface BranchMonitorObject extends MonitorObject{
public final static String BRANCH = "branch";
@InsectInvoke(BRANCH)
public void reportBranch(int id, int taken);

}

Figure 5: The monitor interface for a new branch
probe inserter.

new probe inserter. For the example, we use branches as
the instrumentable entity. (Branches are points in the code
in which a decision is made about the control flow.)1 Cre-
ating a new probe inserter requires the creation of a new
extension of our probe inserter extension point. This exten-
sion must specify the following information: (1) the class
that implements the probe inserter (this class needs to ex-
tend AbstractProbeInserter), (2) a unique identifier for
the probe inserter, (3) the interface that the probe inserter
will call during execution (and that a monitor for the probe
inserter must implement), and (4) a short description of the
probe inserter (for future users).

For this example, we call our monitor interface BranchMon-
itorInterface. The interface is shown in Figure 5. In
method reportBranch, parameter id provides a handle to
retrieve entity metadata, and parameter taken reports which
branch was executed. (This value would be 0 or 1 for an if

or while statements, whereas it could assume several differ-
ent values for a switch.) The metadata would let users map
this information back to the code.

The probe inserter class must implement a method that
performs the actual code instrumentation. The framework
invokes this method automatically on each method of each
class that must be instrumented. In this way, users are re-
lieved from having to deal with a good deal of book keeping

1Note that our framework already provides branch cover-
age, and we selected these entities just for the sake of the
example.

4

public void instrumentMethod(MethodGen mgen) {
InstructionList list = mgen.getInstructionList();
for (InstructionHandle current = list.getStart();

current != null; current = current.getNext()) {
Instruction instr = current.getInstruction();
if (instr instanceof BranchInstruction){

InstructionList probe = new InstructionList();
// push monitor on the stack
probe.append(getMonitorObjectInstance());
// push the probe id on the stack
probe.append(new PUSH(cpgen, getProbeId()));
// normally we would have to calculate this value
probe.append(new PUSH(cpgen, 0));
// execute our monitor method
probe.append(getInvokeInstruction(BranchMonitorObject.BRANCH));
...
// insert probe
Util.insertProbe(probe, list, current);

} } }

Figure 6: Code for a simplified branch probe in-
serter.

and initialization. Moreover, class AbstractProbeInserter

provides some utility methods that can further simplify the
implementation of the probe inserter. To illustrate some
of these methods, in Figure 6, we show a simplified im-
plementation of the probe inserter. For example, method
getMonitorObjectInstance returns an instance of the ap-
propriate monitor for use in the probe. For another exam-
ple, method getInvokeInstruction retrieves the method
to be called in the monitor interface using a previously as-
signed unique name; this name is associated with the class
by means of a Java annotation. AbstractProbeInserter

also provides methods to store extra context information for
a probe in the form of a string. Such information can then
be retrieved, inside the monitor, using the metadata-access
method getContext, provided by AbstractMonitorObject.

5. RELATED WORK
The Java Instrumentation package is a new package in

the Java 5 [3] specification that simplifies the dynamic in-
strumentation of Java programs. Classes can be completely
transformed before being loaded, and smaller changes can
be performed even for already loaded classes. Our frame-
work uses this mechanism to instrument classes before they
are loaded without the use of a class loader.

AspectJ is an implementation of an aspect-oriented lan-
guage extension for Java [1]. Central to AspectJ are the con-
cepts of joinpoint, pointcut, and advice. A joinpoint refers
to a specific point in the code at which a user can implement
functionality. A user of AspectJ can create a pointcut by se-
lecting a set of joinpoints and implementing a piece of code,
called advice, to be run at each of those joinpoints. Hence,
given the pointcut (set of joinpoints) referring to all method
calls, the user can implement an advice that reports all of
the information about that method call. AspectJ, although
powerful for adding crosscutting functionality to the code,
is limited in its library of joinpoints and new joinpoints are
hard to add to the language. AspectJ is also intergrated in
Eclipse using a set of plug-ins.

The Java Instrumentation Engine (JIE) is a generic sys-
tem for source-code instrumentation [5]. The JIE operates
based on an instrumentation configuration. This configura-
tion describes points in the source-code to instrument, and
the action to perform at each of these points. Although the
tool is fairly generic, operating at the source level makes
instrumentation of certain code constructs difficult. Most

notably, the JIE is incapable of basic block or method in-
vocation instrumentation. These limitations stem from the
lack of global type information.

The Java Runtime Anaysis Toolkit (JRAT) is a static
bytecode instrumenter intended for gathering runtime data
and metrics for a program [7]. JRAT’s instrumentation con-
sists of a wrapper method for each method in the program.
Each wrapper method gathers information regarding the in-
vocation of its encapsulated method and fires events. JRAT
provides a Service Provider Interface for event-handling. The
main limitations of JRAT is that it can only collect very lim-
ited dynamic information and is not easy extensible.

The Java Instrumentation API (JIAPI) is a framework
for bytecode instrumentation [4]. JIAPI is capable of both
static and dynamic instrumentation, and provides abstrac-
tions for bytecode manipulation. Instrumentation with JI-
API consists of chaining several instrumenters together. Each
instrumenter manipulates the instruction list of a method
and then forwards the instruction list to the next instru-
menter in the chain. In this manner, JIAPI enables arbritary
instrumentation of the bytecode. Data is collected from the
instrumentation through the use of events. Currently, the
event handling interfaces are limited to methods, fields, and
exception events while our framework can collect a wider
amount of information.

6. CONCLUSION
In this paper, we presented a generic framework that al-

lows for collecting different kinds of runtime information
for a program, such as data about the execution of var-
ious code entities and constructs. The framework is im-
plemented in a tool called InsECTJ. InsECTJ consists of
as a set of Eclipse plug-ins that make it easy to use the
framework for collecting dynamic information for Java pro-
grams. The framework is designed to be flexible and easily
extensible, so as to be able to accommodate different types
of dynamic analysis and monitoring needs. We showed,
through an example, how the framework and the plug-ins
can be used to track certain events while running a Java
program. We also discussed how the framework can be ex-
tended to collect information for additional code entities.
InsECTJ will be available for download shortly at http:

//www.cc.gatech.edu/∼orso/software/insectj.html.

7. REFERENCES
[1] Aspectj project. http://eclipse.org/aspectj/.

[2] Byte-Code Engineering Library (BCEL).
http://jakarta.apache.org/bcel/.

[3] Instrumentation API in Java 5.
http://java.sun.com/j2se/1.5.0/docs/.

[4] Java Instrumentation API (JIAPI).
http://jiapi.sourceforge.net/.

[5] Java Instrumentation Engine (JIE).
http://www.forum2.org/eran/jie/.

[6] Java Platform Debugger Architecture (JPDA).
http://java.sun.com/products/jpda/index.jsp.

[7] Java Runtime Analysis Toolkit (JRAT).
http://jrat.sourceforge.net/index.html.

[8] Java Virtual Machine Profiler Interface (JVMPI).
http://java.sun.com/j2se/1.4.2/docs/guide/

jvmpi/jvmpi.html.

5

